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Talk Outline

* An Introduction

* Frequency Modulation
 An AM-FM Model for M-Mode Ultrasound

 Fast AM-FM Demodulation Implementation

* Discrete-Space Orthogonal FM Transforms
e application to the multidimensional DFT

 Concluding Remarks
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The image and video Processing and
Communications Lab (ivPCL) founded 2000

Ph.D. students (3 advanced to candidacy):
S. Cai: “Tumor Growth Measurement in Lung Cancer Imaging”
J. Kern: “Multispectral Image Registration using Mutual Information™
P. Rodriguez V.: “High-Performance Signal and Image Processing”

M.S. students (6):
J. Ramachandran: “Hierarchical Lung Image Segmentation”
H. Muralidharan: “Medical Imaging Models with Applications to the
Lung and the Heart”

S. Barriga: “Signal Detection in Retinal Video”
H. Yu: “3-D Ultrasound”
A. Vera: “Real-time Video Processing using FPGAs”

Grant Martin:  “3-D CT and Chest Radiograph Image Analysis™
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Paul Rodrlguez V.’s Poster

PERFORMANCE IMPROVMENT
SIMD-FFT vs. FFTW (2 THREADS)
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Square Image (Power of Two)

SIMD is part of ALL GENERAL MICROPROCESSOR
ARCHITECTURES (Pentium I1I/4 and PowerPC tested)
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Songhe Cai’s Poster
3-D Tumor Reconstruction from CT

1 O ’\--\‘\\ G '-”_'_'_,.’-‘f\.’-’-'-’-
5N 10

Threshold at level=100. Threshold at level=170.

Early lung tumor growth detection.
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3-D Reconstruction from Freehand
Ultrasound
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291F292

34

Close agreement to

cylinder ground truth.

Example demonstrates ability
to reconstruct 3-D objects
accurately, from arbitrary

slices (freehand).
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Image Processing in the EECE Department

Masters and Ph.D. programs in Electrical and Computer Engineering:
* Image Processing track, some related courses:

EECE 533 Digital Image Processing

EECE 595.1 Medical Imaging

EECE 595.2 Advanced Topics in Image Processing
e Computational Intelligence track, some related courses:

EECE 517 Pattern Recognition

EECE 547 Neural Networks
« Some other related courses:

EECE 433 Computer Graphics

EECE 516 Computer Vision

EECE 595.3 Detection and Estimation Theory
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An Introduction to AM-FM
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Related Research

Originated by Teager and Kaiser for Speech signal analysis

Continued by three main groups:

* Bovik and his students (Havlicek, Pattichis, Sanghoon, ...)
e very low bitrate video coding (MPEG-4, H.263)
» error resilient and perceptually optimal
* texture completion using Reaction-Diffusion PDEs
e fingerprint classification, latent print analysis (Pattichis)
e shape from texture, ...

* Maragos and his students (Potamianos, Sabathanam, ...)
* 1-D, Speech signal analysis

* Quatier1 (1-D, Speech signal analysis)

* Many joined! (1-D, 2-D)

Also, in 1-D, time-frequency analysis and Communications theory.
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W Eice AM-FM Transforms

Assume:
e the Fourier transform of image ¢g(.) exists.

e a coordinate transformation ®(.):
(21, 22) — P (z1,22) = (P1(21,%2), P2(w1,22) ),
e an amplitude function a(.) > O.

Then, ¢g(.) can be expressed as:

g(x) = ﬂ Ga (F) a(x)ei2t 26 gf

where Gg (.) denotes the AM-FM spectrum:

Gs (f) = ﬂ % =92 @ () | Js (x) | dx
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A Summary of AM-FM Demodulation

Step 1. Apply bandpass channel filters
Step 2. Compute AM-FM parameters over each channel

Step 3. Reconstruct AM-FM 1mage using channels that
produce maximum amplitude estimate (pixel adaptive)

For Teager-Kaiser approach, use maximum energy estimate
to select bands.
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AM-FM Demodulation
Usmg Teager-Kaiser Energy

Operators

Define the 2-D Teager operator by
W AT} (x) = || VI(x) | — I(x)V?I (x)

(where V2 denotes the Laplacian operator).

From I (x1, 20) = AcosO© (x1, 2 ), demodulate using:

00/0s1 ~ /W AOI/0m1} | W AT},
00/~  A/WAOI/0ws} | W AT},

A W {I} A/ W01 /0w1} + W {0102}

Q
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Using Hilbert Approach

For the Hilbert demodulation approach, we use the
algorithms developed by Joebob Havlicek in his
dissertation.

Using the output from the channel G,,(-) with the
maximum energy t.,.(-), we estimate:

N Vitm(x)
Ve = Re[a’tm(x)}
- 1M [£,(x)]
O(x) =~ arctan{Re[tm(X)]}
tm(X)

10~ |Gm[vé‘<x>l



1wwPCL

ELECTRICAL & COMPUTER ENGINEERING

THE UNIVERSITY OF MEW MEXICO

Basic Examples
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20 40 B0 80 100 120

Instantaneous frequency vectors shown (log-scaled and subsampled).
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Fingerprint Classification

[ G
M -FM

40 50 G4 a0
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Electron micrograph of human skeletal muscle

A-band
I Sarcomere I Sarcomere I Sarcomere

Myosin H-zone Actin
myofilaments myofilaments

Z-line

Mitochodria I-band
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Histogram distributions of AM-FM parameters

OF MEW MEXICO
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Bayesian Segmentation and ASF Filtering using
AM-FM Parameters

Nemaline myopathy Mitochondrial myopathy
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Recognition Accuracy

Type of myopathy
Tubular
Nemaline Aggregates Mitochondrial
Number of 2 1 4
cases
Nunqmrof 10 6 10
regions
Recognition o o o
84% 78% 75%

accuracy
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Multidimensional Frequency
Modulation
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The Instantaneous Frequency Gradient Tensor

Let the instantaneous frequency be given by:
O=VO = (01, 02)
T he spatial differential of O is:
dO = Fdx

[aol /dx1 OO, /8332:|

K 005 /021 005 /0xs

IS the Instantaneous Frequency Gradient Tensor.
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Phase Modulation

Expand the phase in a local Taylor series expansion:

©(x) = O(x0)+(x—x%x0)" VO (x0)
——% (X—Xo)T F(x0) (x—x0)

Ry (x — x0, X0 ),

where: Ry (x — xp, Xx0) — 0 as x — xo — 0.

Phase modulation is maximized in the
direction of VO©O.
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Eigen Decomposition of the IFGT

Frequency Modulation expressed in terms of the eigen
decomposition of F (which is real-symmetric):

dO1 €11 €21 A1 O €11 €12 dx1
dO» €12 €292 O X €1 €292 dxo

dO = EAE'dx
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Frequency Modulation Bounds

From

dO = EAE! dx,
we get

|dO|

A >
Aa] 2 | dx |

> | A2, [ A1 > A2

Greatest rate of change of the instantaneous frequency
magnitude in direction of eigenvector corresponding to
maximum absolute eigenvalue.
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Subsampled Aie1, Arer vectors shown.
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A fingerprint example
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An AM-FM Model
for M-Mode Ultrasound Images
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Basic Reflection Imaging System

ez ——>]
I I
l : TRANSDUCER
| |
|~ | R e(t)
Z SIGNAL
(C00( &= o—— bROCESSOR [>—] DISPLAY
N T
PATIENT s(x, y) pl(t)

Transducer acts as both a transmitter and receiver of acoustic waves.
Figure taken from Page 174 of “Medical Imaging Systems” by Albert Macovski.
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Transducer

;
4 uﬁ\\iﬂu

Anterior Posterior Posterior wall
leafleta

s e
. <A

5

|

Slide provided by M.B. Goens, M.D.
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Ground Truth over an M-mode image

4:13:25 pm

bead_w N ear field
Q smmme > Anterior RV wall
IR »R Y chamber
L Interventricular septum
~*LV chamber with some
mitral valve apparatus
LV posterior wall
*Bright epicardium

Image annotated by M.B. Goens, M.D.
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An AM-FM Model 1

We model M-mode 1mages using an AM-FM series
f,t)=2.Caly,t)eos|ng(y, )]

where t=x, a(y, t) denotes the amplitude function,
#(y,t) denotes the phase function, and C, denotes the
AM-FM series coefficients.
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An AM-FM Model 11

aly, 1)
will track the brightness variation due to “material change”,
reflected in changes 1n the reflectivity of the material.

#(y,1)
will track the curvilinear coordinate represented by wall
boundaries.
a(y, t)cos|ng(y, )]

will track the AM-FM harmonics over the curvilinear
coordinate system represented by the wall boundaries.
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Fast AM-FM Demodulation
Implementation
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SIMD-FFT (Paul Rodriguez V.)

Comparison between the FFTW (scalar implementation) and
SIMD-FFT

Complex input data — Linux (Intel Architecture)
Improvement range 89% - 374%

PERFORMANCE IMPROVMENT OF THE SIMD-FFT
WHEN COMPARE TO THE STANDARD FFTW
(COMPLEX INPUT DATA)

400

300 -
% 200 -
100 o * =

@
= >

5 6 7 8 9 10 11 12 13 14
DATA SIZE (POWER OF TWO)
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2D SIMD-FFT (Paul Rodriguez V.)

Comparison between the 2D FFTW (scalar implementation)
and 2D SIMD-FFT

Complex input data — Linux (Intel Architecture)
Improvement range 87% - 330%

PERFORMANCE IMPROVMENT OF THE 2D SIMD-FFT WHEN COMPARED
TO THE STANDARD 2D FFTW
(COMPLEX INPUT DATA - PENTIUM4)
400
300 | //‘\‘
% 200
100 | '/.\/
5 6 7 8 9 10
INPUT DATA SIZE (POWER OF TWO - SQUARE IMAGE)
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2-D Magnitude Plots

“Analytic Image”

Filter 1 Filter 2
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Filtered images through first filter

50 50
100 100
150 150
200 200
250 250
300 300
350 350 | , , ‘ : ‘ .
50 100 150 200 250 300 350 50 100 150 200 250 300 350

Negative real image Negative imaginary image
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AM-FM Estimates through first filter

50+

100

150

250

300¢

e 350+
50 100 150 200 250 300 350 50 100 150 200 250 300 350

Amplitude Image FM 1mage
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AM-FM Reconstruction over First Filter

50 100 150 200 250 300 350 50 100 150 200 250 300 350

Original 1mage AM-FM reconstruction over filter 1.

Note black lines over regions where QEA “fails”.
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Filtered image through second filter

50

100 100

150 150+

200 200

250 250

300 300

350 350 . . | . ‘ . .
50 100 150 200 250 300 350 50 100 150 200 250 300 350

Real Image Imaginary Image
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AM-FM Estimates through second filter

100

150
200

250

3007

350¢

50 100 150 200 250 300 350

Amplitude Image FM Image
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AM-FM Reconstruction over Second Filter

50 100 150 200 250 300 350 | 5 ’IOO 150 200 250 300 350
Original image AM-FM Reconstruction over filter 2.

Note black lines over regions where “QEA” fails.
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AM-FM Reconstructions over Both Filters

50 100 150 200 250 300 350 50 100 150 200 250 300 350

Reconstruction where QEA “holds” Reconstruction with smoothing

Note the limited number of regions over regions where QEA ““fails™
where QEA “fails”.
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AM-FM Reconstruction vs Original Image

50 100 150 200 250 300 350 50 100 150 200 250 300 350

Original 1mage Reconstruction with smoothing
over regions where QEA “fails”
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AM-FM Reconstruction
vs Harmonics Image (1llustrat1ng Walls)

50 100 150 200 250 300 350 50 100 150 200 250 300 350

Original image Sum of the first 20 FM harmonics
thresholded and segmented
for a(x,y)>100 (first filter only)
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Multidimensional Discrete-Space
Orthogonal FM Transforms
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Discrete-Space FM Transforms

Let g be a bounded M-dimensional signal defined on

Q=1{0,1,..., N —1}M,

We are interested in the conditions on the
vector-valued phase-function & so that
g can be expressed as

g(n) = N2 %~ g(k) exp [ j2k - @) |.

ke

where M denotes the number of dimensions.
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We write
g(n) = N2 Gk exp [ j3k- @) | |
ke
where the FM spectrum G(-) is given by
G(k) = N2 g(n) exp| —j%k - (n) |
nee
If and only If:

For ®@(-) = (¢1(-), ¢2(-), .-, dm(+) ),
Vn, p, n Zp, 3¢ such that ¢;(n) —¢d;(p) Z0 (Mmod N).

The FM-transform condition is satisfied
If & IS a permutation on Q.
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Orthogonal FM Transform Relation to DFT

If ®(-) is a permutation of @, then
the M-dimensional FM transform is equivalent to:

A permutation of signal samples,
followed by the AM-dimensional
Discrete Fourier Transform (DFT).

We want to find permutations that permute

any given signal to one with highly concentrated
FM spectra.
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Signals with Compact Spectra

A proper unidirectional periodic signal x(-)
IS any signal on ) that satisfies:

z(n) depends only on the first coordinate
x(n) =xz(n1), where n=(ny, ..., Nuy)

For some positive integer T' dividing N,
x(-) is T-periodic: z(n1) = xz(n1 +T1).

x(0),z(1),...,z(T — 1) are distinct.
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{Matching Arbitrary Signals
(including Signals with compact Spectra)

If the permutation ® of (J minimizes

D (@(@09) — 1))’

ke

then we say that ® matches x to t.

We match a signal £ to a target signal ¢ using:

If & sorts x and ¥ sorts ¢, then ® o ¥~! matches z to ¢.

For sorting multidimensional signals, we first order the
samples into a one-dimensional signal.
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JPEG Modlﬁed for Implementing FM Transform
Encoder

Step 1. Compute Optimal Permutation
Step 2. Permute Image Samples

Step 3. Compress Optimal Permutation
Step 4. Apply DCT

Decoder

Step 1. Apply inverse DCT
Step 2. Uncompress Optimal Permuation
Step 3. Depermute image samples
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One blt Permutations for DCT Target
Sort the signal y(-) into x(-):

treated as wvo treated as vy
/_/% /_/*
x1 < .- §37N2/2 §$N2/2+1 < e S Xy

Need only store a single bit per signal sample in y(-)
(meaning vy or v»).

Then, map the first v1 value to the first location in the
matrix below, and so on for v, and the rest of the values:

rTp —
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" Two-bit Permutations for DCT Target

Sort the signal y(-) into x(-):
treated as v treated as vs

e || et \—

X1 S oer S T2 S Tn2ja41 S S T2

treated as v;

e ——

< s <Tapopagg < < wpo

Need only store two bits per signal sample in y(-)
(meaning vy, v2, v3, OF wa).

Then, permute the signal samples to match the pattern

V1 Vo V3 V4 V4 V3 Vo V1

rTp —

1 Vo V3 V4 V4 V3 Vo V1 00



1wPCL

ELECTRICAL & COMPUTER ENGINEERING

THE UNIVERSITY OF MEW MEXICO

Original Signal

7

m'n
i -f‘ |
\ ' i

Amplitude

0 200 400 600
time

Log Magnitude Plot of the DCT Spectrum

o 200 400 600
DCT Coefficient Number

Spectral Energy Compaction

Histogram Distribution Of Orlglnal Signal Samples
15

—
o

Number of Occurences
o

S0 100 0 100 200
Sianal Value

Log Magnitude Plot of the FM Spectrum

[0}

Magnitude
R

A"

—h
T

200 400 600
FM Coefficient Number
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Orthogonal FM Transform:
Some Image Compression Results

PSNR in dB

25
24.5
24r MWH**"'4'_
23.5 . T S _ - =9
23F .- T
— FM + Std JPEG
2285 | Opt JPEG
--- Sid JPEG
%95 1 1.65

Bits Per Pixel

1.1

30

29+

PSNR in dB

r
-l
T

A

na
[+3]
T

26 L

FM+Std JPEG
Opt JPEG
---  Std JPEG

1.65

1.7 1.75
Bits Per Pixel

1.8
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Future work in Multispectral

Image Compression?

Hypothesis
If the pixels represent the same structure, then
they require the same permutation irrespective
of the spectral band.

Hence, high compression should be possible by
Effectively encoding permutation changes between

bands.
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Application to
Multidimensional Discrete
Fourier Transform and
Computerized Tomography
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Nin
Ny

Ppery= [l y)de=1n
ray path AB

From “Principles of Computerized Tomographic Imaging” by Kak and Slaney.
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The Fourier Slice Theorem

oooooooooooooooooooooooooooooooo

<

Fourier transform

.
e,
e

space domain frequency domain

Each Projection can be used to compute a line spectrum in
the frequency domain.

From “Principles of Computerized Tomographic Imaging” by Kak and Slaney.
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By taking projections at multiple angles, it 1s possible to
reconstruct an image, and invert the projection operation.

From “Principles of Computerized Tomographic Imaging” by Kak and Slaney.
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Frequency-Domain Sampling

’ -7 T~ ~
/., - ¥~ ~ N
/ N
N
/ \ u
r! Vo
W\~ —d
. ”, » —4
\ Y l“\ i ! | j
\ oy
5 LN ;
N 1T s
~ - - -
N /

To reconstruct the 1image, interpolate to estimate the 2-d spectrum,
and take the inverse 2-d FFT.

From “Principles of Computerized Tomographic Imaging” by Kak and Slaney.
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Three Directions of Interest

For Horizontal Frequencies:

< o o o>

For Vertical Frequencies: <o o o o
<Q ® O §:>

o o o o

2%
For Diagonal Frequencies: %
2
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Covering the DFT Spectrum

Definition. A set S is said to cover S if for every
vesS, wecan find a v € 5, and an integer a > O,
such that v = av’.

Define V by V = {v € S|d4¢ such that wv; = 1}.

Theorem. Let N; = 27, where p; > 0.
Then V covers S.
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Two-Dimensional DFT Computation

Cover S (in two dimensions) using:

v, ={i,1)]i=0,1,2,..., N, -1
v, ={1,i)]i=0,2,4,...,N, -2}
Ve =V b,

3N N

Only ——_ _ N4+ 1-D FFTs (for square images).
2 2
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Three-Dimensional DFT Computation

Cover § (in three dimensions) using:
Vi =110, j)]0<i <N, -1, 0< j <N, —1}
v, ={(,i,1)] j=0,2,4,...,N, ~1,0<i < N, — 1

v, ={i, j,1)|i=0,2,4,...,N, -1, j=0,2,4,...,N, — 1
Ve =V, OV, UV,

only "V _ 2, N N [I.DFFTS (for NxN xN images).
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Minimum Cardinality Result I

Theorem 2. The cardinality of }/., is minimal in
the sense that:
There does not exist V(; that covers O, yet
satisfying ‘Vc‘ > ‘Vc ‘

The 2-D and 3-D Directional Decompositions Exhibit the
Minimum number of 1-D FFTs.
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Each FFT can be modified to compute the spectrum along
spectral frequencies that were not computed before.

Minimal computation can be achieved by requiring that the
number of computed DFT frequencies is equal to the
number of possible DFT frequencies in the image.

Eg: We use 3N /2 “Decimated in Frequency” FFTs to
compute a total of N discrete frequencies.
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Concluding Remarks

 AM-FM analysis holds great promise for
continuous-scale analysis problems
(eg: M-mode ultrasound, ...)

e Multidimensional DFT work will be applied 1n
1mage restoration, fast, but also:

Numerical accuracy:
uses a single FFT per discrete frequency,
irrespective of dimension!
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